Speech Keyword Spotting Method Based on Swin-Transformer Model

Author:

Sun ChengliORCID,Chen Bikang,Chen Feilong,Leng Yan,Guo Qiaosheng

Abstract

AbstractWith the rapid advancements in deep learning technology, the Transformer-based attention neural network has shown promising performance in keyword spotting (KWS). However, this method suffers from high computational cost since the excessive parameters in the Transformer model and the computational burden of global attention, which limit its applicability in a resource-constrained KWS scenario. To overcome this issue, we propose a novel Swin-Transformer based KWS method. In this approach, first extract dynamic features using Temporal Convolutional Network (TCN) from input Mel-Frequency Cepstral Coefficients (MFCCs). Then, the Swin-Transformer is employed to capture hierarchical multi-scale features, where a window attention is designed to grasp dynamic time–frequency features. Furthermore, to enhance the extraction of contextual information from the spectrogram, a frame-level shifted window attention mechanism is proposed to enhance the inter-window interaction, thus extracting more contextual information from the spectrogram. Experimental results on the speech command V1 dataset verify the effectiveness of the proposal, which achieves a recognition accuracy of 98.01% with less model parameters, outperforming existing KWS methods.

Funder

National Natural Science Foundation of China

State Key Laboratory of Food Science and Technology, Nanchang University

Natural Science Foundation of Jiangxi Province

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3