YOLF-ShipPnet: Improved RetinaNet with Pyramid Vision Transformer

Author:

Qiu Zhiruo,Rong Shiyang,Ye LikunORCID

Abstract

AbstractIn the field of ship detection, the intricate nature of ship images arises from a multitude of factors, including variations in ship orientation, color contrasts, and diverse shapes. These factors collectively contribute to the challenge of achieving high detection precision. Thus, it is necessary to investigate the application of advanced networks for ship image detection. In this paper, we have put forward an improved network called YOLF-ShipPnet, which utilizes a popular pyramid vision transformer with increased depth as the backbone for the RetinaNet network. To increase the model’s generalization ability, You Only Look Once eXtreme’s (YOLOX’s) hue, saturation, and value (HSV) random augmentation technique is employed to simulate light and color effects on ship images during the construction of the network. Ablation experiments were conducted on the model with two popular datasets: High-Resolution Ship Collections 2016 (HRSC2016) and SAR Ship Detection Dataset (SSDD). The YOLF-ShipPnet network has been verified to improve detection precision and generalization ability in ship detection by $$5.22\%$$ 5.22 % and $$5.46\%$$ 5.46 % , respectively, compared to RetinaNet baseline, exhibiting strong robustness and high effectiveness. The proposed network is applicable to the field of fine-grained ship detection and achieves an accuracy improvement of $$10.03\%$$ 10.03 % compared to the baseline network.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3