Many-Objective Whale Optimization Algorithm for Engineering Design and Large-Scale Many-Objective Optimization Problems

Author:

Kalita KanakORCID,Ramesh Janjhyam Venkata Naga,Čep Robert,Jangir Pradeep,Pandya Sundaram B.,Ghadai Ranjan Kumar,Abualigah Laith

Abstract

AbstractIn this paper, a novel Many-Objective Whale Optimization Algorithm (MaOWOA) is proposed to overcome the challenges of large-scale many-objective optimization problems (LSMOPs) encountered in diverse fields such as engineering. Existing algorithms suffer from curse of dimensionality i.e., they are unable to balance convergence with diversity in extensive decision-making scenarios. MaOWOA introduces strategies to accelerate convergence, balance convergence and diversity in solutions and enhance diversity in high-dimensional spaces. The prime contributions of this paper are—development of MaOWOA, incorporation an Information Feedback Mechanism (IFM) for rapid convergence, a Reference Point-based Selection (RPS) to balance convergence and diversity and a Niche Preservation Strategy (NPS) to improve diversity and prevent overcrowding. A comprehensive evaluation demonstrates MaOWOA superior performance over existing algorithms (MaOPSO, MOEA/DD, MaOABC, NSGA-III) across LSMOP1-LSMOP9 benchmarks and RWMaOP1-RWMaOP5 problems. Results validated using Wilcoxon rank sum tests, highlight MaOWOA excellence in key metrics such as generational distance, spread, spacing, runtime, inverse generational distance and hypervolume, outperforming in 71.8% of tested scenarios. Thus, MaOWOA represents a significant advancement in many-objective optimization, offering new avenues for addressing LSMOPs and RWMaOPs’ inherent challenges. This paper details MaOWOA development, theoretical basis and effectiveness, marking a promising direction for future research in optimization strategies amidst growing problem complexity.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3