Spark-Based Label Diffusion and Label Selection Community Detection Algorithm for Metagenome Sequence Clustering

Author:

Wu Zhengjiang,Wu Xuyang,Luo Junwei

Abstract

AbstractIt is a challenge to assemble an enormous amount of metagenome data in metagenomics. Usually, metagenome cluster sequence before assembly accelerates the whole process. In SpaRC, sequences are defined as nodes and clustered by a parallel label propagation algorithm (LPA). To address the randomness of label selection from the parallel LPA during clustering and improve the completeness of metagenome sequence clustering, Spark-based parallel label diffusion and label selection community detection algorithm is proposed in the paper to obtain more accurate clustering results. In this paper, the importance of sequence is defined based on the Jaccard similarity coefficient and its degree. The core sequence is defined as the one with the largest importance in its located community. Three strategies are formulated to reduce the randomness of label selection. Firstly, the core sequence label diffuses over its located cluster and becomes the initial label of other sequences. Those sequences that do not receive an initial label will select the sequence label with the highest importance in the neighbor sequences. Secondly, we perform improved label propagation in order of label frequency and sequence importance to reduce the randomness of label selection. Finally, a merge small communities step is added to increase the completeness of clustered clusters. The experimental results show that our proposed algorithm can effectively reduce the randomness of label selection, improve the purity, completeness, and F-Measure and reduce the runtime of metagenome sequence clustering.

Funder

National Natural Science Foundation of China

Innovative and Scientific Research Team of Henan Polytechnic University

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3