Argumentation Reasoning with Graph Isomorphism Networks for Reddit Conversation Analysis

Author:

Alsinet TeresaORCID,Argelich Josep,Béjar Ramón,Gibert Daniel,Planes Jordi

Abstract

AbstractThe automated analysis of different trends in online debating forums is an interesting tool for sampling the agreement between citizens in different topics. In previous work, we have defined computational models to measure different values in these online debating forums. One component in these models has been the identification of the set of accepted posts by an argumentation problem that characterizes this accepted set through a particular argumentation acceptance semantics. A second component is the classification of posts into two groups: the ones that agree with the root post of the debate, and the ones that disagree with it. Once we compute the set of accepted posts, we compute the different measures we are interested to get from the debate, as functions defined over the bipartition of the posts and the set of accepted posts. In this work, we propose to explore the use of graph neural networks (GNNs), based on graph isomorphism networks, to solve the problem of computing these measures, using as input the debate tree, instead of using our previous argumentation reasoning system. We focus on the particular online debate forum Reddit, and on the computation of a measure of the polarization in the debate. We explore the use of two different approaches: one where a single GNN model computes directly the polarization of the debate, and another one where the polarization is computed using two different GNNs: the first one to compute the accepted posts of the debate, and the second one to compute the bipartition of the posts of the debate. Our results over a set of Reddit debates show that GNNs can be used to compute the polarization measure with an acceptable error, even if the number of layers of the network is bounded by a constant. We observed that the model based on a single GNN shows the lowest error, yet the one based on two GNNs has more flexibility to compute additional measures from the debates. We also compared the execution time of our GNN-based models with a previous approach based on a distributed algorithm for the computation of the accepted posts, and observed a better performance.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Reference29 articles.

1. Aragon, P., Gomez, V., Garcia, D., Kaltenbrunner, A.: Generative models of online discussion threads: state of the art and research challenges. J. Intern. Serv. Appl. 8(15), 1–17 (2017)

2. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). https://doi.org/10.1126/science.286.5439.509

3. Lusher, D., Koskinen, J., Robins, G. (eds.): Exponential Random Graph Models for Social Networks: Theory, Methods, and Applications. Structural Analysis in the Social Sciences. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9780511894701

4. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4–9, 2017, Long Beach, CA, USA, pp. 1024–1034 (2017). https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html

5. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings. OpenReview.net (2017). https://openreview.net/forum?id=SJU4ayYgl

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ChainNet: A Customized Graph Neural Network Model for Loss-Aware Edge AI Service Deployment;2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN);2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3