Enhanced Salp Search Algorithm for Optimization Extreme Learning Machine and Application to Dew Point Temperature Prediction

Author:

Zhang Xiangmin,Zhou YongquanORCID,Huang Huajuan,Luo Qifang

Abstract

AbstractExtreme learning machine (ELM) is popular as a method of training single hidden layer feedforward neural networks. However, the ELMs optimized by the traditional gradient descent algorithms cannot fundamentally solve the influence of the random selection of the input weights and biases. Therefore, this paper proposes a method of extreme learning machine optimized by an enhanced salp search algorithm (NSSA-ELM). Salp search algorithm (SSA) is a metaheuristic algorithm, to improve the performance of SSA exploration and avoid getting stuck in local optima, the neighborhood centroid opposite‑based learning is used to optimize SSA. This method maintains the diversity of the population, which is conducive to avoid local optimization and accelerate convergence. This paper performs classification tests on NSSA and other metaheuristic-optimized ELMs on ten datasets, and regression tests on 5 datasets. Finally, the prediction ability of dew point temperature is evaluated. The meteorological data of five climatically representative cities in China from 2016 to 2022 were collected to predict the dew point temperature. The experimental results show that the NSSA-ELM is the best model, and its generalization performance and accuracy are better than other models.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Reference50 articles.

1. Mangasarian, O.L., Street, W.N., Wolberg, W.H.: Breast cancer diagnosis and prognosis via linear programming. IEEE. Comput. Sci. Eng. 43(4), 570–577 (1995)

2. Annema, A.J.: Feed-forward neural networks. Compr. Chemom. 13(4), 27–31 (1995)

3. Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K., Chung, E.S.: Accelerating deep convolutional neural networks using specialized hardware. Microsoft. Res. Whitepaper. 2(11), 1–4 (2015)

4. Chris, B.: Improving the generalization properties of radial basis function neural networks. Neural. Comput. 3(4), 579–588 (1991)

5. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the marquardt algorithm. IEEE Trans. Neural. Networks. 5(6), 989–993 (1994)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3