Minimum Noise Fraction and Long Short-Term Memory Model for Hyperspectral Imaging

Author:

Dash Satyabrata,Chakravarty Sujata,Giri Nimay Chandra,Agyekum Ephraim Bonah,AboRas Kareem M.ORCID

Abstract

AbstractIn recent years, deep learning techniques have presented a major role in hyperspectral image (HSI) classification. Most commonly Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) has greatly advanced the accuracy of hyperspectral image classification, making it powerful tool for remote sensing applications. Deep structure learning, which involves multiple layers of neural network, has shown promising results in effectively addressing nonlinear problems and improving classification accuracy and reduce execution time. The exact categorization of ground topographies from hyperspectral data is a crucial and current research topic that has gotten a lot of attention. This research work focuses on hyperspectral image categorization utilizing several machine learning approaches such as support vector machine (SVM), K-Nearest Neighbour (KNN), CNN and LSTM. To reduce the number of superfluous and noisy bands in the dataset, Principal Component Analysis (PCA) and Minimum Noise Fraction (MNF) were utilized. Different performance evaluation measures like time taken for testing, classification accuracy, kappa accuracy, precision, recall, specificity, F1_score, and Gmean have been taken to prove the efficacy of the models. Based on the simulation results, it is observed that the LSTM model outperforms the other models in terms of accuracy percentage and time consumption, making it the most effective model for classifying hyperspectral imaging datasets.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NSGA-II based short-term building energy management using optimal LSTM-MLP forecasts;International Journal of Electrical Power & Energy Systems;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3