COVID-19 Forecast and Bank Credit Decision Model Based on BiLSTM-Attention Network

Author:

Zhang Beiqin

Abstract

AbstractThe COVID-19 pandemic has caused drastic fluctuations in the economies of various countries. Meanwhile, the governments’ ability to save the economy depends on how banks provide credit to troubled companies. Therefore, the impact of the epidemic on bank credit and inclusive finance are worth exploring. However, most of the existing studies focus on the reform of the financial and economic system, only paying attention to the theoretical mechanism analysis and effect adjustment, scant data support, and insufficient scheme landing. At the same time, with the rise and rapid development of artificial intelligence technology in recent years, all walks of life have introduced it into real scenes for multi-source heterogeneous big data analysis and decision-making assistance. Therefore, we first take the Chinese mainland as an example in this paper. By studying the impact of the epidemic on bank credit preference and the mechanism of inclusive finance, we can provide objective decision-making basis for the financial system in the post-epidemic era to better flow credit funds into various entities and form a new perspective for related research. Then, we put forward a model based on Bi-directional Long Short-term Memory Network (BiLSTM) and Attention Mechanism to predict the number of newly diagnosed cases during the COVID-19 pandemic every day. It is not only suitable for COVID-19 pandemic data characterized by time series and nonlinearity, but also can adaptively select the most relevant input data by introducing an Attention Mechanism, which can solve the problems of huge calculation and inaccurate prediction results. Finally, through experiments and empirical research, we draw the following conclusions: (1) The impact of the COVID-19 pandemic will promote enterprises to increase credit. (2) Banks provide more credit to large enterprises. (3) The epidemic has different impacts on credit in different regions, with the most significant one on central China. (4) Banks tend to provide more credit to manufacturing industries under the epidemic. (5) Digital inclusive finance plays a (positive) regulating effect on bank credit in COVID-19 pandemic. Inspired by the research results, policymakers can consider further solving the information asymmetry and strengthening the construction of a credit system, and more direct financial support policies for enterprises should be adopted. (6) By adopting the COVID-19 prediction model based on the BiLSTM-Attention network to accurately predict the epidemic situation in the COVID-19 pandemic, it can provide an important basis for the formulation of epidemic prevention and control policies.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3