Many-Objective Grasshopper Optimization Algorithm (MaOGOA): A New Many-Objective Optimization Technique for Solving Engineering Design Problems

Author:

Kalita Kanak,Jangir Pradeep,Čep Robert,Pandya Sundaram B.,Abualigah Laith

Abstract

AbstractIn metaheuristic multi-objective optimization, the term effectiveness is used to describe the performance of a metaheuristic algorithm in achieving two main goals—converging its solutions towards the Pareto front and ensuring these solutions are well-spread across the front. Achieving these objectives is particularly challenging in optimization problems with more than three objectives, known as many-objective optimization problems. Multi-objective algorithms often fall short in exerting adequate selection pressure towards the Pareto front in these scenarios and difficult to keep solutions evenly distributed, especially in cases with irregular Pareto fronts. In this study, the focus is on overcoming these challenges by developing an innovative and efficient a novel Many-Objective Grasshopper Optimisation Algorithm (MaOGOA). MaOGOA incorporates reference point, niche preserve and information feedback mechanism (IFM) for superior convergence and diversity. A comprehensive array of quality metrics is utilized to characterize the preferred attributes of Pareto Front approximations, focusing on convergence, uniformity and expansiveness diversity in terms of IGD, HV and RT metrics. It acknowledged that MaOGOA algorithm is efficient for many-objective optimization challenges. These findings confirm the approach effectiveness and competitive performance. The MaOGOA efficiency is thoroughly examined on WFG1-WFG9 benchmark problem with 5, 7 and 9 objectives and five real-world (RWMaOP1- RWMaOP5) problem, contrasting it with MaOSCA, MaOPSO, MOEA/DD, NSGA-III, KnEA, RvEA and GrEA algorithms. The findings demonstrate MaOGOA superior performance against these algorithms.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3