Abstract
AbstractThe framework of fuzzy-interval-valued functions (FIVFs) is a generalization of interval-valued functions (IVF) and single-valued functions. To discuss convexity with these kinds of functions, in this article, we introduce and investigate the harmonically $$\mathsf{h}$$
h
-convexity for FIVFs through fuzzy-order relation (FOR). Using this class of harmonically $$\mathsf{h}$$
h
-convex FIVFs ($$\mathcal{H}-\mathsf{h}$$
H
-
h
-convex FIVFs), we prove some Hermite–Hadamard (H⋅H) and Hermite–Hadamard–Fejér (H⋅H Fejér) type inequalities via fuzzy interval Riemann–Liouville fractional integral (FI Riemann–Liouville fractional integral). The concepts and techniques of this paper are refinements and generalizations of many results which are proved in the literature.
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Computer Science
Reference58 articles.
1. Mohammed, P.O., Abdeljawad, T.: Opial integral inequalities for generalized fractional operators with nonsingular kernel. J. Inequal. Appl. 2020, 148 (2020)
2. Farid, G., Rehman, A.U., Bibi, S., Chu, Y.M.: Refinements of two fractional versions of Hadamard inequalities for Caputo fractional derivatives and related results. Open J. Math. Sci. 5, 1–10 (2021)
3. Khan, M.A., Begum, S., Khurshid, Y., Chu, Y.M.: Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018, 70 (2018)
4. Sarikaya, M.Z., Bilişik, C.C., Tunç, T.: On Hardy type inequalities via k-fractional integrals. TWMS J. Appl. Eng. Math. 10(2), 443–451 (2020)
5. Dahmani, Z., Tabharit, L., Taf, S.: New generalizations of Grüss inequality using Riemann-Liouville fractional integrals. Bull. Math. Anal. Appl. 2(3), 93–99 (2010)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献