Changes in Genotype Composition and Morphology at an Experimental Site of Common Reed (Phragmites australis) Over a Quarter of a Century

Author:

Kuprina KristinaORCID,Seeber Elke,Rudyk Anna,Wichmann Sabine,Schnittler Martin,Bog Manuela

Abstract

AbstractThe cultivation of common reed (Phragmites australis) is one of the most promising practices of paludiculture on fen peatlands. This highly productive grass has a high adaptation capacity via high levels of genetic diversity and phenotypic plasticity. In this study, a reed experimental site established on a degraded fen in 1996/97 with a mixture of monoclonally (meristematically propagated plantlets) and polyclonally (pre-grown seedlings) planted plots was investigated by microsatellite genotyping. All nine genotypes of the monoclonal planted plots were recovered and could be genetically characterized; invasion by other genotypes was negligible. Similarly, the polyclonal plots sustained high clonal diversity with no prevalence of a single genotype. The growth characteristics of the five quantitatively investigated genotypes significantly differed from each other (α = 0.05): dry biomass per stem 5–18 g, panicles per m2 20–60, average stem diameter 3.5–6 mm, height 170–250 cm. Similarly, the persistence of genotypes at the planted plots and their invasiveness (ability to invade neighboured plots) varied. These results show that common reed stands are extremely persistent even if established with genotypes that are likely not to be locally adapted. Their genetic structure remained stable for at least 24 years regardless of the planting density (1, 4, and 10 plants per m2). Our results indicate that farmers may be able to maintain favourable genotypes for many years, thus the selection and breeding of common reed as a versatile crop for rewetted peatlands is a promising objective for paludiculture research.

Funder

Universität Greifswald

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Ecology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3