Peatland Plant Functional Type Effects on Early Decomposition Indicators are Non-Pervasive, but Microhabitat Dependent

Author:

Sahar Najam eORCID,Robroek Bjorn J. M.ORCID,Mills Robert T. E.ORCID,Dumont Marc G.ORCID,Barel Janna M.ORCID

Abstract

AbstractOmbrotrophic peatlands are important long-term sinks for atmospheric carbon as plant productivity exceeds litter decomposition. Changes in plant community composition may alter decomposition rates through alterations in microbial communities and activity. Such plant community driven changes in decomposition rates may however differ between microhabitats. Nevertheless, the microhabitat-context-dependency of plant community composition effects on decomposition remains poorly understood. We used a long-term (> 10 year) plant removal experiment to study how vascular plant functional types (PFTs, i.e. graminoids and ericoids) influence decomposition processes in wet lawns and hummocks. We employed the Tea Bag Index (TBI) as an indicator for early litter decomposition and carbon stabilization and assessed the potential activity of five hydrolytic extracellular enzymes (EEAs) as indicators for microbial activity. PFT removal had no effect on the TBI decomposition rate constant (k), nor on the stabilization factor (S). Yet, k increased slightly when both PFTs were absent. In the lawns, we observed higher values of k and S as compared to hummocks. PFT composition influenced four out of five hydrolytic EEAs that can drive decomposition. Yet, this influence was non-pervasive and microhabitat dependent. In wet lawns, PFT removal generally increased enzyme activities, while opposite trends were detected in the hummocks. Our results suggest an important role for vegetation change, through their influence on enzyme activity, along the lawn-hummock gradient in regulating decomposition processes in northern peatlands. This implies that potential consequences of vegetation changes on organic matter turnover, hence the peatland carbon sink function, cannot be generalized across peatland microhabitats.

Funder

Stiftelsen Anna och Gunnar Vidfelts Fond för Biologisk Forskning

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Ecology,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3