Interactions and Covariation of Ecological Drivers Control CO2 Fluxes in an Alpine Peatland

Author:

Carbognani MicheleORCID,Tomaselli MarcelloORCID,Petraglia AlessandroORCID

Abstract

AbstractPeatland ecosystems are a highly effective long-term carbon sink. However, the CO2 fluxes could be substantially altered by climate changes and the fate of carbon stored in these ecosystems is still uncertain. Currently, most studies concerning the carbon fluxes in peatlands were performed at high latitude sites, where these ecosystems are more widely distributed compared to temperate regions, where peatlands are less frequent and, in addition to climate pressure, increasingly threatened by human activities. However, the information we have on these peatlands is very scarce. To fill this knowledge gap, we studied CO2 fluxes in an alpine peatland, through light and dark incubations. Using the natural variation in ecological conditions, we identified the main drivers of CO2 fluxes, considering in particular their interactions and covariation. Ecosystem respiration and gross primary production were primarily stimulated by the lowering of the water table and the amount of photosynthetic radiation, respectively, whereas net ecosystem CO2 exchange showed greater variation along the growing season. The influence on CO2 fluxes of the interactions between the drivers investigated, including soil temperature and moisture as well as vegetation type and plant functional diversity, was found to be of pivotal importance. Finally, a substantial part of the variation in CO2 emission and uptake processes was regulated by the joint variation of atmospheric and edaphic factors. To understand and predict the CO2 dynamics of alpine peatlands, it is necessary to consider the interplays among ecological factors, especially in relation to the expected changes in climate and vegetation.

Funder

Università degli Studi di Parma

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Ecology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3