Predicting Inundation Dynamics and Hydroperiods of Small, Isolated Wetlands Using a Machine Learning Approach

Author:

Riley Jeffrey W.ORCID,Stillwell Charles C.ORCID

Abstract

AbstractThe duration of inundation or saturation (i.e., hydroperiod) controls many wetland functions. In particular, it is a key determinant of whether a wetland will provide suitable breeding habitat for amphibians and other taxa that often have specific hydrologic requirements. Yet, scientists and land managers often are challenged by a lack of sufficient monitoring data to enable the understanding of the wetting and drying dynamics of small depressional wetlands. In this study, we present and evaluate an approach to predict daily inundation dynamics using a large wetland water-level dataset and a random forest algorithm. We relied on predictor variables that described characteristics of basin morphology of each wetland and atmospheric water budget estimates over various antecedent periods. These predictor variables were derived from datasets available over the conterminous United States making this approach potentially extendable to other locations. Model performance was evaluated using two metrics, median hydroperiod and the proportion of correctly classified days. We found that models performed well overall with a median balanced accuracy of 83% on validation data. Median hydroperiod was predicted most accurately for wetlands that were infrequently inundated and least accurate for permanent wetlands. The proportion of inundated days was predicted most accurately in permanent wetlands (99%) followed by frequently inundated wetlands (98%) and infrequently inundated wetlands (93%). This modeling approach provided accurate estimates of inundation and could be useful in other depressional wetlands where the primary water flux occurs with the atmosphere and basin morphology is a critical control on wetland inundation and hydroperiods.

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Ecology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3