1. Alshamrani, A., Myneni, S., Chowdhary, A., Huang, D.: A survey on advanced persistent threats: techniques, solutions, challenges, and research opportunities. IEEE Commun. Surv. Tutorials 21(2), 1851–1877 (2019)
2. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017)
3. Gehani, A., Ahmad, R., Irshad, H., Zhu, J., Patel, J.: Digging into big provenance (with spade). Commun. ACM 64(12), 48–56 (2021)
4. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
5. Huang, Q., Yamada, M., Tian, Y., Singh, D., Yin, D., Chang, Y.: Graphlime: local interpretable model explanations for graph neural networks (2020)