A Comparative Study of Rolling Bearing Fault Classification Using CWT-CNN and STFT-CNN Methods
Author:
Publisher
Springer Nature Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-99-9264-5_11
Reference12 articles.
1. Wei Y, Li Y, Xu M, Huang W (2019) A review of early fault diagnosis approaches and their applications in rotating machinery. Entropy 21:4–10
2. Kankar PK, Sharma SC, Harsha SP (2011) Fault diagnosis of ball bearings using machine learning method. Expert Syst Appl 38:1876–1886
3. Ben Ali J, Fnaiech N, Saidi L, Chebel-Morello B, Fnaiech F (2015) Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Appl Acoust 89:16–27
4. Toma RN, Kim CH, Kim JM (2021) Bearing fault classification using ensemble empirical mode decomposition and convolutional neural network. Electronics (Switzerland) 10(11)
5. Saxena M, Bannet O, Gupta M, Rajoria RP (2016) Bearing fault monitoring using CWT based vibration signature. Procedia Eng 144:234–241
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3