Funder
Agricultural Research Organization
Japanese Society of Promotion Science
Publisher
Springer Nature Singapore
Reference7 articles.
1. Abdullakasim, W., Kasemjit, A., & Satirametekul, T. (2022). Estimation of sugarcane growth using vegetation indices derived from aerial images. Proceedings of the International Conference “Innovation for Resilience Agriculture”, October 19–21, 2022, Chiang Mai University, Chiang Mai, Thailand, 174–181.
2. Chea, C., Saengprachatanarug, K., Posom, J., Wongphati, M., & Taira, E. (2020). Sugar yield parameters and fiber prediction in sugarcane fields using a multispectral camera mounted on a small unmanned aerial system (UAS). Sugar Tech, 22(4), 605–621.
3. Singhpoo, T., Saengprachatanarug, K., Wongpichet, S., Posom, J., & Saikaew, K. R. (2023). Cassava stalk detection for a cassava harvesting robot based on YOLOv4 and Mask R-CNN. Journal of Agricultural Engineering, LIV:1301.
4. Sookchalearn, T., & Abdullakasim, W. (2017). A low-cost sensor for measuring and mapping chlorophyll content in cassava leaves. Chiang Mai University Journal of Natural Sciences, 16(3), 183–190.
5. Sukcharoenvipharat, W., Aumarrom, T., Usaborisut, P., Jantra, C., & Abdullakasim, W. (2023a). Design and development of a hot water treatment device for small-scale sugarcane farmers. Sugar Tech, (In Press). https://doi.org/10.1007/s12355-023-01330-8