Publisher
Springer Nature Singapore
Reference12 articles.
1. Reis, H.C.; Turk, V.; Khoshelham, K.; Kaya, S. InSiNet: a deep convolutional approach to skin cancer detection and segmentation. Medical & Biological Engineering & Computing 2022, 60, 643–662, doi:https://doi.org/10.1007/s11517-021-02473-0.
2. Breast Cancer Now. What are the signs and symptoms of breast cancer? Available online: https://breastcancernow.org/about-us/media/facts-statistics#signs-and-symptoms (accessed on February).
3. Nilashi, M.; Ibrahim, O.; Ahmadi, H.; Shahmoradi, L. A knowledge-based system for breast cancer classification using fuzzy logic method. Telematics and Informatics 2017, 34, 133–144, doi: https://doi.org/10.1016/j.tele.2017.01.007.
4. Gayathri, B.M.; Sumathi, C.P. Mamdani fuzzy inference system for breast cancer risk detection. In Proceedings of the 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), 10–12 Dec. 2015, 2015; pp. 1–6.
5. Hernández-Julio, Y.F.; Prieto-Guevara, M.J.; Nieto-Bernal, W.; Meriño-Fuentes, I.; Guerrero-Avendaño, A. Framework for the development of data-driven Mamdani-type fuzzy clinical decision support systems. Diagnostics 2019, 9, 1–33.