Publisher
Springer Nature Singapore
Reference5 articles.
1. Bifet, A., & Gavaldà, R. (2009). Adaptive learning from evolving data streams. In Proceedings of the 8th International Symposium on Intelligent Data Analysis: Advances in Intelligent Data Analysis VIII, IDA’09 (pp. 249–260). Springer.
2. Grzenda, M., Gomes, H. M., & Bifet, A. (2020). Delayed labelling evaluation for data streams. Data Mining and Knowledge Discovery, 34(5), 1237–1266.
3. Ikonomovska, E. (2012). Algorithms for learning regression trees and ensembles on evolving data streams. Ph.D. Thesis, Jozef Stefan International Postgraduate School.
4. Street, W. N., & Kim, Y. S. (2001). A streaming ensemble algorithm (SEA) for large-scale classification. In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’01 (pp. 377–382). Association for Computing Machinery.
5. Thomas, R. L., & Uminsky, D. (2022). Reliance on metrics is a fundamental challenge for AI. Patterns, 3(5), 1--8.