Publisher
Springer Nature Singapore
Reference9 articles.
1. A.B. Arrieta et al., Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion 58, 82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012
2. T. Miller, Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 267, 1–38 (Feb. 2019). https://doi.org/10.1016/j.artint.2018.07.007
3. B. Kim, R. Khanna, and O. Koyejo, Examples are not enough, learn to criticize! criticism for interpretability, in Proceedings of the 30th International Conference on Neural Information Processing Systems (Red Hook, NY, USA, 2016), pp. 2288–2296
4. M. Du, N. Liu, X. Hu, Techniques for interpretable machine learning. Commun. ACM 63(1), 68–77 (Dec. 2019). https://doi.org/10.1145/3359786
5. M. A. Ahmad, C. Eckert, A. Teredesai, Interpretable Machine Learning in Healthcare, in Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (Washington DC USA, 2018), pp. 559–560. https://doi.org/10.1145/3233547.3233667