Author:
Deng Qi,Liu Guangqing,Li Ruyang,Hu Qifu,Zhao Yaqian,Li Rengang
Publisher
Springer Nature Singapore
Reference30 articles.
1. Ahmed, M., Abobakr, A., Lim, C.P., Nahavandi, S.: Policy-based reinforcement learning for training autonomous driving agents in urban areas with affordance learning. IEEE Trans. Intell. Transp. Syst. 23(8), 12562–12571 (2022). https://doi.org/10.1109/TITS.2021.3115235
2. Chen, D., Koltun, V., Krähenbühl, P.: Learning to drive from a world on rails. In: 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, 10–17 October 2021, pp. 15570–15579. IEEE (2021). https://doi.org/10.1109/ICCV48922.2021.01530
3. Chen, J., Li, S.E., Tomizuka, M.: Interpretable end-to-end urban autonomous driving with latent deep reinforcement learning. IEEE Trans. Intell. Transp. Syst. 23(6), 5068–5078 (2022). https://doi.org/10.1109/TITS.2020.3046646
4. Chen, J., Yuan, B., Tomizuka, M.: Model-free deep reinforcement learning for urban autonomous driving. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 2765–2771 (2019). https://doi.org/10.1109/ITSC.2019.8917306
5. Chen, L., et al.: Decision transformer: Reinforcement learning via sequence modeling. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34, Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021(December), pp. 6–14, 2021. Virtual, pp. 15084–15097 (2021). https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html