Author:
Hai Pham Ngoc,Hieu Hoang Trung,Hung Phan Duy
Publisher
Springer Nature Singapore
Reference20 articles.
1. Huynh, H.D., Dang, L.M., Duong, D.: A New Model for Stock Price Movements Prediction Using Deep Neural Network. In: Proceedings of the Eighth International Symposium on Information and Communication Technology (SoICT 2017), pp. 57–62. Association for Computing Machinery, New York, NY, USA (2017).
2. Krauss C, Do XA, Huck N (2017) Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. Eur J Oper Res 259(2):689–702
3. Ghosh P, Neufeld A, Sahoo JK (2021) Forecasting directional movements of stock prices for intraday trading using LSTM and random forests. Financ Res Lett 41:102280
4. Makrehchi, M., Shah, S., Liao, W.: Stock prediction using event-based sentiment analysis. In: 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence
5. (WI) and Intelligent Agent Technologies (IAT), vol. 1, pp. 337-342 (2013).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Predicting Hanoi House Prices Using Machine Learning;Lecture Notes in Networks and Systems;2024
2. Efficient Mining of Top-K Cross-Level High Utility Itemsets;Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications;2023