Author:
Zhang Zhao,Wang Jin,Hu Qi,Chen Hanwen
Publisher
Springer Nature Singapore
Reference18 articles.
1. Chen, L.J., Du, J.L., Chen, J.Y.: Bayesian filtering estimation approach based on finite element method. Syst. Eng. Electron. 39(10), 2305–2311 (2017)
2. Lopez-Restrepo, S., Yarce, A., Pinel, N., Quintero, O.L., Segers, A., Heemink, A.W.: A knowledge-aided robust ensemble Kalman filter algorithm for non-linear and non-Gaussian large systems. Front. Appl. Math. Stat. 8, 830116 (2022)
3. Conjard, M., Omre, H.: Data assimilation in spatio-temporal models with non-Gaussian initial states—the selection ensemble Kalman model. Appl. Sci. 10(17), 5742 (2020)
4. Zhou, H., Gomez-Hernandez, J.J., Franssen, H.J.H., Li, L.: An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering. Adv. Water Resour. 34(7), 844–864 (2011)
5. Kumar, D., Srinivasan, S.: Indicator-based data assimilation with multiple-point statistics for updating an ensemble of models with non-Gaussian parameter distributions. Adv. Water Resour. 141, 103611 (2020)