1. Abidine, B.M., Fergani, L., Fergani, B., Oussalah, M.: The joint use of sequence features combination and modified weighted SVM for improving daily activity recognition. Pattern Anal. Appl. 21, 119–138 (2016)
2. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: ESANN (2013)
3. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence);A Bevilacqua,2019
4. Bruno, B., Mastrogiovanni, F., Sgorbissa, A.: Wearable inertial sensors: applications, challenges, and public test benches. IEEE Robot. Autom. Mag. 22, 116–124 (2015). https://doi.org/10.1109/MRA.2015.2448279
5. Burns, D.M., Whyne, C.M.: Personalized activity recognition with deep triplet embeddings. arXiv abs/2001.05517 (2020)