Author:
Wang Yanghao,Wang Dong,Lian Jie,Xu Xiaopeng,Lian Lei
Publisher
Springer Nature Singapore
Reference20 articles.
1. Littman, M. L.: Markov games as a framework for multi-agent reinforcement learning. Machine learning proceedings 1994. 1st edn. Morgan Kaufmann, Frisco (1994)
2. Khetarpal, K., Riemer, M., Rish, I., Precup, D.: Towards continual reinforcement learning: a review and perspectives. J. Artif. Intell. Res. 75, 1401–1476 (2022)
3. Oroojlooy, A., Hajinezhad, D.: A review of cooperative multi-agent deep reinforcement learning. Appl. Intell. 53(11), 13677–13722 (2023)
4. Hu, J., Wellman, M.P.: Nash Q-learning for general-sum stochastic games. J. Mach. Learn. Res. 4(11), 1039–1069 (2003)
5. Fan, J., Wang, Z., Xie, Y., Yang, Z.: A theoretical analysis of deep Q-learning. In: 2nd Proceedings of Conference on Learning for Dynamics and Control, pp. 486–489 (2020)