Publisher
Springer Nature Singapore
Reference17 articles.
1. Anderson, T. W. (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proceedings of the American Mathematical Society, 6(2), 170–176.
2. Athreya,S., Joseph, M. & Mueller, C. (2021). Small ball probabilities and a support theorem for the stochastic heat equation. Annals of Probability, 49(5), 2548–2572.
3. Carmona, R. A., & Molchanov, S. A. (1994). Parabolic Anderson problem and intermittency. Memoirs of the American Mathematical Society,108. Rhode Island: American Mathematical Society.
4. Dalang, R., Khoshnevisan, D., Mueller, C., Nualart, D., & Xiao, Y. (2006). A minicourse in stochastic partial differential equations. In: Khoshnevisan, D., & Rassoul–Agha, F. (Eds.) Lecture Notes in Mathematics (Vol. 1962). Berlin: Springer.
5. Foondun, M., Joseph, M., & Kim, K. (2022). Small ball probability estimates for the Hölder semi-norm of the stochastic heat equation. Probability theory and related fields.