Author:
Ding Guohui,Geng Shizhan,Jiao Qingyang,Jiang Tianhao
Publisher
Springer Nature Singapore
Reference28 articles.
1. Tang, W., Long, G., Liu, L., Zhou, T., Blumenstein, M., Jiang, J.: Omni-scale cnns: a simple and effective kernel size configuration for time series classification. arXiv preprint arXiv:2002.10061 (2020)
2. Dempster, A., Petitjean, F., Webb, G.I.: Rocket: exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining Knowl. Discov. 34(5), 1454–1495 (2020). https://doi.org/10.1007/s10618-020-00701-z
3. Liu, M.: Gated transformer networks for multivariate time series classification. arXiv preprint arXiv:2103.14438 (2021)
4. Tripathi, A.M., Baruah, R.D.: Multivariate time series classification with an attention-based multivariate convolutional neural network. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)
5. Jin, X.B., Yang, A., Su, T., Kong, J.L., Bai, Y.: Multi-channel fusion classification method based on time-series data. Sensors 21(13), 4391 (2021)