Author:
Salleh Sh Hussain,Noman Fuad,Hussain Hadri,Ting Chee-Ming,Hamid Syed Rasul bin G. Syed,Sh-Hussain Hadrina,Jalil M. A.,Zubaidi A. L. Ahmad,Rizvi Syed Zuhaib Haider,Kipli Kuryati,Jacob Kavikumar,Ray Kanad,Kaiser M. Shamim,Mahmud Mufti,Ali Jalil
Publisher
Springer Nature Singapore
Reference38 articles.
1. Llamedo, M., Martinez, J.P.: An automatic patient-adapted ECG heartbeat classifier allowing expert assistance. IEEE Trans. Biomed. Eng. 59(8), 2312–2320 (2012)
2. Jortveit, J., Lislevand, T.H., Rysstad, L., Dahlslett, T., Sjøli, B.: Long-term ECG recording: findings and implications. Tidsskr. Den Nor. legeforening (2020)
3. Altay, Y.A., Kremlev, A.S.: Analysis and systematization of noise arising by long-term recording of ECG signal. In: IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) 2018, 1053–1057 (2018)
4. Oster, J., Behar, J., Sayadi, O., Nemati, S., Johnson, A.E.W., Clifford, G.D.: Semisupervised ECG ventricular beat classification with novelty detection based on switching Kalman filters. IEEE Trans. Biomed. Eng. 62(9), 2125–2134 (2015)
5. Philip de, C., Dwyer, M.O., Reilly, R.B.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)