Submicroscopic Evaluation Studies to Minimize Delayed Ettringite Formation in Concrete for a Sustainable Industry and Circular Economy

Author:

Ramu Yogesh Kumar,Thomas Paul Stephen,Vessalas Kirk,Sirivivatnanon Vute

Abstract

AbstractThe high cost of maintenance, repair and retrofitting of concrete infrastructure to keep these structures durable and serviceable is not sustainable, so the design process needs to consider all aspects of deterioration mechanism/s that can potentially occur in a concrete structure. The ideal solution should contribute to sustainability by enhancing the durability of concrete elements and supporting a circular economy. We studied delayed ettringite formation (DEF), a potential deterioration mechanism, including mitigation measures, in various heat-cured cementitious systems. The results showed that continuously connected pore/crack paths at the submicroscopic level favor the transportation of DEF-causing ions in heat-cured systems. DEF increases the chance of developing cracks, which is a durability concern. To mitigate DEF, fly ash produced from an Australian bituminous coal-burning power station was incorporated in the binder to support the circular economy concept. Changes in heat-cured cementitious systems were evaluated using expansion, electrical resistivity, dynamic modulus, and microstructural studies. The pozzolanicity of fly ash was found to greatly enhance the formation of denser calcium-silica-hydrate, which in turn restricted the transportation of DEF-causing ions at the submicron level, leading to less DEF occurrence and enhancement of the durability and sustainability of concrete in field structures.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3