Experimental and Numerical Studies on the In-Plane Shear Behavior of PVC-Encased Concrete Walls

Author:

Kildashti Kamyar,Samali Bijan

Abstract

AbstractThe effective application of lightweight stay-in-place concrete forms for casting shear walls subjected to wind and seismic loading is of particular concern to practitioners. Insufficient technical data available for new kinds of wall systems, such as Polyvinyl Chloride (PVC) form walls, hinder their implementation in construction practice. To that end, an effective experimental and numerical campaign was launched at Western Sydney University to investigate the structural performance of PVC form walls when subjected to in-plane shear loading. A set of push-out specimens was designated to conduct monotonic in-plane shear tests until failure. All failure phenomena, capping strengths, and ductility capacities were monitored. Test results indicated that the embedded PVC latticed webs could efficiently protect the concrete web from sudden crushing and improve ductility capacity and failure pattern of the specimens. Nonlinear finite element analysis on test specimens was also conducted and good correlation with experiment results was achieved.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3