Ensemble Kalman filter for state estimation of brain activity by considering a large scale nonlinear dynamical model
Author:
Publisher
Springer Singapore
Link
http://link.springer.com/content/pdf/10.1007/978-981-10-4086-3_112
Reference7 articles.
1. Dumedah Gift, Coulibaly Paulin. Evaluating forecasting performance for data assimilation methods: The ensemble Kalman filter, the particle filter, and the evolutionary-based assimilation Advances in Water Resources. 2013;60:47 - 63.
2. Tamura Hitoshi, Bacopoulos Peter, Wang Dingbao, Hagen Scott C., Kubatko Ethan J.. State estimation of tidal hydrodynamics using ensemble Kalman filter Advances in Water Resources. 2014;63:45 - 56.
3. Zuluaga Carlos D., Álvarez Mauricio A., Giraldo Eduardo. Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison Applied Energy. 2015;156:321 - 330.
4. Gillijns S., Mendoza O. B., Chandrasekar J., Moor B. L. R. De, Bernstein D. S., Ridley A.. What is the ensemble Kalman filter and how well does it work? in 2006 American Control Conference:6 pp.- 2006.
5. Hut Rolf, Amisigo Barnabas A., Steele-Dunne Susan, Giesen Nick. Reduction of Used Memory Ensemble Kalman Filtering (RumEnKF): A data assimilation scheme for memory intensive, high performance computing Advances in Water Resources. 2015;86, Part B:273 - 283. Data assimilation for improved predictions of integrated terrestrial systems.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3