Author:
Srinivasa Kumar C.,Sirisati Ranga Swamy,Thonukunuri Srinivasulu
Reference13 articles.
1. Balogun, A.O., et al.: Performance analysis of feature selection methods in software defect prediction: a search method approach. Appl. Sci. 9(13), 2764 (2019)
2. You, X., Ma, Y., Liu, Z.: An improved twin support vector machine based on multi-objective cuckoo search 291. An improved artificial bee colony algorithm for solving parameter identification problems. Int. J. Comput. Sci. Math. 8(6), 570–579 (2017)
3. Sirisati, R.S.: Dimensionality reduction using machine learning and big data technologies. Int. J. Innov. Technol. Explor. Eng. (IJITEE-2278-3075) 9(2), 1740–1745) (2019)
4. Sirisati, R.S.: Machine learning based diagnosis of diabetic retinopathy using digital fundus images with CLAHE along FPGA methodology. Int. J. Adv. Sci. Technol. (IJAST-2005-4238) 29(3), 9497–9508 (2020)
5. Malhotra, R.: A systematic review of machine learning techniques for software fault prediction. Appl. Soft Comput. 27, 504–518 (2015). https://doi.org/10.1016/j.asoc.2014.11.023
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Analysis Of Software Defect Prediction Using Machine-Learning Techniques;2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2023-05-12
2. An automated software failure prediction technique using hybrid machine learning algorithms;Journal of Engineering Research;2023-03