Author:
Zhang Jiangtao,Li Juanzi,Jiao Zengtao,Yan Jun
Reference13 articles.
1. de Bruijn, B., Cherry, C., Kiritchenko, S., Martin, J., Zhu, X.: Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010. J. Am. Med. Inf. Assoc. 18(5), 557 (2011)
2. Jiang, M., et al.: A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. JAMIA 18, 601–606 (2011)
3. Kundeti, S.R., Vijayananda, J., Mujjiga, S., Kalyan, M.: Clinical named entity recognition: challenges and opportunities. In: IEEE International Conference on Big Data, pp. 1937–1945 (2016)
4. Luo, L., Li, N., Li, S.S., Yang, Z., Lin, H.: Dutir at the ccks-2018 task1: a neural network ensemble approach for chinese clinical named entity recognition. In: CCKS Tasks (2018)
5. Meystre, S.M., Savova, G.K., Kipper-Schuler, K.C., Hurdle, J.F.: Extracting information from textual documents in the electronic health record: a review of recent research. In: Yearbook of Medical Informatics, pp. 128–144, January 2008
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献