Author:
Xiaofei Song,Cunlu Dang,Weiwei Wang,Dengyin Yao
Publisher
Springer Nature Singapore
Reference13 articles.
1. Zhang, P., Qi, B., Li, C., et al.: Quantitative analysis of influencing factors of dissolved gas characteristics in power transformer oil. Proc. CSEE 41(10), 3620–3631+3686 (2021). (in Chinese)
2. Kari, T., He, Z., Rouzi, A., et al.: Power transformer fault diagnosis using random forest and optimized kernel extreme learning machine. Intell. Autom. Soft Comput. 37(1) (2023)
3. Li, P., Hu, G.: Transformer fault diagnosis method based on data-enhanced one-dimensional improved convolutional neural network. Power Syst. Technol. 47(07), 2957–2967 (2023). https://doi.org/10.13335/j.1000-3673.pst.2022.1902. (in Chinese)
4. Engin, B., Varbak, S.N., Erkan, D.: Hybrid condition monitoring system for power transformer fault diagnosis. Energies 16(3) (2023)
5. Taha, I.B.M., Ibrahim, S., Mansour, D.A.: Power transformer fault diagnosis based on DGA using a convolutional neural network with noise in measurements. IEEE ACCESS 9 (2021)