Author:
Pavitha N.,Ratnaparkhi Pranav,Uzair Azfar,More Aashay,Raj Swetank,Yadav Prathamesh
Publisher
Springer Nature Singapore
Reference13 articles.
1. Escalera, S., Guyon, I., Escalante, H.J., Xavier, B., Gerven, M.: Explainable and interpretable models in Computer Vision and machine learning. Springer (2018)
2. Samek, W., Grégoire, M., Vedaldi, A., Hansen, L.K., Klaus-Robert, M.: Explainable Ai: Interpreting, explaining and Visualizing Deep Learning. Springer International Publishing (2019)
3. Biran, O.C.: Cotton, definition and correction in machine-learning: A survey. Paper presented to IJCAI-17 Workshop on Explainable AI (XAI), Melbourne, Australia, 20 August (2017)
4. Kulesza, T., Burnett, M., Wong, W.-K., Stumpf, S.: Principles of explanatory debugging to personalize interactive machine learning. Proceedings of the 20th International Conference on Intelligent User Interfaces (2015). https://doi.org/10.1145/2678025.2701399
5. Bellotti, V., Edwards, K.: Intelligibility and accountability: Human considerations in context-aware systems. Human-Computer Int. 16(2–4), 193–212 (2001). https://doi.org/10.1207/s15327051hci16234_05