1. Solomon, D., Patil, P.P., Agrawal, P.: Predicting performance and potential difficulties of university student using classification: survey paper. Int. J. Pure Appl. Math. 118(18), 2703–2707 (2018)
2. Ameen, A.O., Alarape, M.A., Adewole, K.S.: Students’ academic performance and dropout predictions: a review. Malays. J. Comput. 4(2), 278–303 (2019)
3. Brownlee, J.: Classification Accuracy is Not Enough: More Performance Measures You Can Use (2014). Available at https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/. Last accessed on 2019/06/05. F.: Article title. Journal 2(5), 99–110 (2016)
4. Akosa, J.S.: Predictive accuracy: a misleading performance measure for highly imbalanced data. SAS Global Forum, vol. 942, pp. 1–12 (2017). Author, F., Author, S.: Title of a proceedings paper. In: Editor, F., Editor, S. (eds.) Conference 2016. LNCS, vol. 9999, pp. 1–13. Springer, Heidelberg (2016)
5. Aziz, A.A., Ismail, N.H., Ahmad, F., Hassan, H.: A framework for students’ academic performance analysis using Naïve Bayes classifier. J. Teknol. 3, 13–19 (2015)