Review of Sublinear Modeling in Probabilistic Graphical Models by Statistical Mechanical Informatics and Statistical Machine Learning Theory

Author:

Tanaka Kazuyuki

Abstract

AbstractWe review sublinear modeling in probabilistic graphical models by statistical mechanical informatics and statistical machine learning theory. Our statistical mechanical informatics schemes are based on advanced mean-field methods including loopy belief propagations. This chapter explores how phase transitions appear in loopy belief propagations for prior probabilistic graphical models. The frameworks are mainly explained for loopy belief propagations in the Ising model which is one of the elementary versions of probabilistic graphical models. We also expand the schemes to quantum statistical machine learning theory. Our framework can provide us with sublinear modeling based on the momentum space renormalization group methods.

Publisher

Springer Singapore

Reference116 articles.

1. J.C.D. MacKay, Information Theory, Inference, and Learning Algorithms (Cambridge University Press, 2003)

2. D. Koller, N. Friedman, Probabilistic Graphical Models: Principles and Techniques (MIT Press, 2009)

3. P.K. Murphy, Machine Learning: A Probabilistic Perspective (MIT Press, 2012)

4. I. Rish, G.Y. Grabarnik, Sparse Modelling: Theory, Algorithms, and Applications (Chapman & Hall/CRC, 2015)

5. T. Hastie, R. Tibshirani, M.J. Wainwright, Statistical Learning with Sparsity: The Lasso and Generalizations (Chapman & Hall/CRC, 2015)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3