1. Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al.: Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. 13(5), 1333–1345 (2017)
2. Berahas, A.S., Nocedal, J., Takác, M.: A multi-batch l-bfgs method for machine learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
3. Bonawitz, K., et al.: Towards federated learning at scale: system design. Proc. Mach. Learn. Syst. 1, 374–388 (2019)
4. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)
5. Chilimbi, T., Suzue, Y., Apacible, J., Kalyanaraman, K.: Project Adam: building an efficient and scalable deep learning training system. In: 11th $$\{$$USENIX$$\}$$ Symposium on Operating Systems Design and Implementation ($$\{$$OSDI$$\}$$ 14), pp. 571–582 (2014)