1. Grafsgaard, J.F., Wiggins, J.B., Boyer, K.E., Wiebe, E.N., Lester, J.C.: Automatically recognizing facial expression: predicting engagement and frustration. In: Proceedings of the 6th International Conference on Educational Data Mining (2013). doi:
https://doi.org/10.1109/acii.2013.33
2. Moridis, C.N., Economides, A.A.: Affective learning: empathetic agents with emotional facial and tone of voice expressions. IEEE Trans. Affect. Comput. 3(3), 260–272 (2012). doi:
https://doi.org/10.1109/T-AFFC.2012.6
3. Hoque, M.E, Courgeon, M., Martin, J.-C., Mutlu, B., Picard, R.W.: MACH: my automated conversation coacH. In: Proceedings of the 2013 ACM International Joint Conference on Pervasive and ubiquitous computing, pp. 697–706. ACM (2013). doi:
https://doi.org/10.1145/2493432.2493502
4. Ahn, S.J., Bailenson, J., Fox, J., Jabon, M.: Using automated facial expression analysis for emotion and behavior prediction. In: The Routledge Handbook of Emotions and Mass Media, pp. 349 (2010).
http://vhil.stanford.edu/pubs/2010/ahn-hemm-facial-expression.pdf
5. Kim, H.-J., Choi, Y.S.: EmoSens: afective entity scoring, a novel service recommendation framework for mobile platform. In: Workshop on Personalization in Mobile Application of the 5th International Conference on Recommender System (2011).
http://pema2011.cs.ucl.ac.uk/papers/pema2011_kim.pdf