Evolutionary Computation Meets Multiagent Systems for Better Solving Optimization Problems
Author:
de Carvalho Vinicius RenanORCID,
Sichman Jaime SimãoORCID
Publisher
Springer Singapore
Reference49 articles.
1. Acan, A., Lotfi, N.: A multiagent, dynamic rank-driven multi-deme architecture for real-valued multiobjective optimization. Artif. Intell. Rev. 48(1), 1–29 (2017)
2. Atallah, M.J.: Algorithms and Theory of Computation Handbook. CRC Press, Boca Raton (1998)
3. Aydin, M.E., Fogarty, T.C.: Teams of autonomous agents for job-shop scheduling problems: an experimental study. J. Intell. Manuf. 15(4), 455–462 (2004)
4. Balid, A., Minz, S.: Improving multi-agent evolutionary techniques with local search for job shop scheduling problem. In: 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 516–521, December 2008
5. Barbucha, D.: A cooperative population learning algorithm for vehicle routing problem with time windows. Neurocomputing 146, 210–229 (2014). Bridging Machine learning and Evolutionary Computation (BMLEC) Computational Collective Intelligence