Author:
Hari Krishna M.,Bhavitha Ch.,Siva A.,Sai Srinivas K.,Dinesh K.
Publisher
Springer Nature Singapore
Reference25 articles.
1. X. Yuan, C. Li, X. Li, DeepDefense: Identifying DDoS Attack via Deep Learning (IEEE Hong Kong, China, 2017), pp. 1–8. https://doi.org/10.1109/SMARTCOMP.2017.7946998
2. Y. Wei, J. Jang-Jaccard, F. Sabrina, A. Singh, W. Xu, S. Camtepe, AE-MLP: a hybrid deep learning approach for DDoS detection and classification. IEEE Access 9, 146810–146821 (2021). https://doi.org/10.1109/ACCESS.2021.3123791
3. DDoSnet: A deep-learning model for detecting network attacks. in 2020 IEEE 21st International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM) (IEEE, 2020), pp. 391–396
4. J. Halladay et al., Detection and characterization of DDoS attacks using time-based features. IEEE Access 10, 49794–49807 (2022). https://doi.org/10.1109/ACCESS.2022.3173319
5. N. Ahuja, G. Singal, D. Mukhopadhyay, DLSDN: deep learning for DDOS attack detection in software defined networking. in 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (Noida, India, 2021), pp. 683–688. https://doi.org/10.1109/Confluence51648.2021.9376879