Author:
Sun Yusheng,Zhong Weibo,Li Yuhua,Cui Xiao,Zhao Zhe,Chen Weihai
Publisher
Springer Nature Singapore
Reference16 articles.
1. Haurum, J.B., Moeslund, T.B.: Sewer-ML: a multi-label sewer defect classification dataset and benchmark. In: IEEE Computer Society. Virtual, Online, United States (2021)
2. Moradi, S., Zayed, T., Golkhoo, F.: Review on computer aided sewer pipeline defect detection and condition assessment. Infrastructures 4(1) (2019)
3. Shaohua, D., Xuan, S., Shuyi, X., et al.: Automatic defect identification technology of digital image of pipeline weld. Nat. Gas Ind. B 6(4) (2018)
4. Hawari, A., Alamin, M., Alkadour, F., et al.: Automated defect detection tool for closed circuit television (CCTV) inspected sewer pipelines. Autom. Constr. 89 (2018)
5. Huang, Y.L.: Research on pipeline crack defect detection method based on video images. Xi’an University of Technology (2018)