1. Agarwal, S., Farid, H., Gu, Y., He, M., Nagano, K., Li, H.: Protecting world leaders against deep fakes. In: CVPR Workshops, pp. 38–45 (2019)
2. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Guyon, I., Dror, G., Lemaire, V., Taylor, G.W., Silver, D.L. (eds.) Unsupervised and Transfer Learning - Workshop held at ICML 2011, Bellevue, Washington, USA, July 2, 2011. JMLR Proceedings, vol. 27, pp. 37–50. JMLR.org (2012). http://proceedings.mlr.press/v27/baldi12a.html
3. Baltrusaitis, T., Zadeh, A., Lim, Y.C., Morency, L.: Openface 2.0: Facial behavior analysis toolkit. In: 13th IEEE International Conference on Automatic Face & Gesture Recognition, FG 2018, Xi’an, China, May 15–19, 2018, pp. 59–66. IEEE Computer Society (2018). https://doi.org/10.1109/FG.2018.00019
4. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)
5. Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M., Ferrer, C.C.: The deepfake detection challenge (dfdc) dataset. arXiv preprint arXiv:2006.07397 (2020)