Measurement of Velocity and Particle Size in Shock Wave Area Generated by Experimental Granular Flow Impacting on a Cylinder Based on Image Processing Methods

Author:

Xu Jing,Wang Jian,Wang Dongpo,Chen Zheng

Abstract

AbstractThe measurement of flow velocity and particle size remains an important issue in granular -flow dynamics and can provide important basis to better understand the physics in granular material, particularly when it impacts on a structure. In this study, laboratory chute experiments were performed with quartz-glass particle materials to investigate the characteristics of granular shock developed upstream of a cylinder generated by granular flow impacts. A time series of flow images recorded by a camera has been analyzed and processed using the digital image processing methods such as the gray processing, the image binarization, the image corrosion and expansion, and the generative adversarial networks, with a goal of obtaining flow velocity and particle size in the granular shock area. The experimental results reveal that the granular-flow velocity grows with increasing slope angle. The granular shock thickness shows a general increase with the growing number of particles in the shock area, and the number of particles demonstrates an inversely proportional to increasing Froude number, providing a potential method for determining the particle size of dense granular flow. The findings of this study could help to better understand the shock dynamics of granular flow impacting on an obstacle.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3