Experimental Study on Inclination Test of Fiber Bragg Grating

Author:

Tan Kang,Dong Ping,Gou Wanchun,Guo Qi,Li Yi

Abstract

AbstractDeep displacement monitoring is an important means to monitor the deformation of slope, landslide and deep foundation pit. Traditional deep displacement monitoring uses manual inclinometer, which is time-consuming and laborious, and has large manual operation error, so it is impossible to realize automatic monitoring. It is urgent to adopt new technical means to make up for these shortcomings. Based on fiber Bragg grating sensing technology and beam bending theory, this paper establishes the calculation formula of fiber Bragg grating deep inclinometer, which can calculate the deep displacement curve of inclinometer through the change of fiber Bragg grating center wavelength; The strain sensitivity coefficient of fiber Bragg grating is calibrated by indoor calibration test. The experimental results show that the center wavelength of fiber Bragg grating has a high correlation with strain, and the relationship is linear. The strain and displacement of inclinometer tube are monitored and compared by indoor model test. The test results show that the displacement error calculated by fiber Bragg grating is 2% ~ 12%, which can meet the needs of deep displacement monitoring. The relevant conclusions provide a certain reference for the research of fiber Bragg grating deep displacement monitoring.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3