Author:
Wang Haimeng,Hu Tongning,Zeng Yifeng,Xu Hongjie,Li Xiaofei,Zhou Feng,Fan Kuanjun
Publisher
Springer Nature Singapore
Reference14 articles.
1. Hou, H., Jin, Q., Zhang, G., Li, Z.: CT image quality enhancement via a dual-channel neural network with jointing denoising and super-resolution. Neurocomputing 492, 343–352 (2022). https://doi.org/10.1016/j.neucom.2022.04.040
2. Li, Y., Chen, L., Li, B., Zhao, H.: 4× Super‐resolution of unsupervised CT images based on GAN. IET Image Process. 17(8), 2362–2374 (2023). https://doi.org/10.1049/ipr2.12797
3. Xie, H., Xie, K., Yang, H.: Research Progress of Image Super-Resolution Methods. Comput. Eng. Appl. 56(19), 34–41 (2020)
4. Dai, D., Timofte, R., Van Gool, L.: Jointly optimized regressors for image super-resolution. Comput. Graph. Forum 34, 95–104 (2015)
5. Wang, Z., Liu, D., Yang, J., Han, W., et al.: Deep networks for image super-resolution with sparse prior. In: IEEE International Conference on Computer Vision, pp. 370–378 (2015)