An Overview of Data Mining Techniques for Student Performance Prediction
Author:
Zhang Xiu,Zhang Xin
Publisher
Springer Singapore
Reference33 articles.
1. S. Hussain, N.A. Dahan, F.M. Baalwi, N. Ribata, Educational data mining and analysis of students’ academic performance using WEKA. Indonesian J. Electr. Eng. Comput. Sci. 9(31), 447–459 (2018) 2. S. Hussain, R. Atallah, A. Kamsin, J. Hazarika, Classification, clustering and association rule mining in educational datasets using data mining tools: a case study, in Cybernetics and Algorithms in Intelligent Systems. CSOC2018 2018. Advances in Intelligent Systems and Computing, AISC 765, ed. by R. Silhavy (Springer, 2019), pp. 196–211 3. G. Gunduz, E. Fokoue, UCI Machine Learning Repository (University of California, School of Information and Computer Science, Irvine, CA, 2013) 4. M. Vurkac, Clave-direction analysis: a new arena for educational and creative applications of music technology. J. Music, Technol. Educ. 4(1), 27–46 (2011) 5. M. Vahdat, L. Oneto, A. Ghio, G. Donzellini, D. Anguita, M. Funk, M. Rauterberg, A learning analytics methodology to profile students behavior and explore interactions with a digital electronics simulator, in EC-TEL 2014. LNCS, 8719, ed. by S. de Freitas, C. Rensing, T. Ley, P.J. Munoz-Merino (Springer, 2014), pp. 596–597
|
|