Author:
Palembiya Revi Asprila,Setiawan Muhammad Nanda,Gultom Elnora Oktaviyani,Prayitno Adila Sekarratri Dwi,Kurniati Nani,Iqbal Mohammad
Reference15 articles.
1. Ran, Y., Zhou, X., Lin, P., Wen, Y., Deng, R.: A survey of predictive maintenance: systems, purposes and approaches. arXiv preprint arXiv:1912.07383 (2019)
2. Farsi, M.A., Zio, E.: Industry 4.0: some challenges and opportunities for reliability engineering. Int. J. Reliab. Risk Saf.: Theory Appl. 2(1), 23–34 (2019)
3. Susanto, B., Kurniati, N.: Multi sensor-based failure diagnosis using the mahalanobis taguchi system. In: IOP Conference Series: Materials Science and Engineering, vol. 847, no. 1, p. 012036. IOP Publishing (2020)
4. Ku ́Smirek, W., Szmur lo, A., Wiewi ́Orka, M., Nowak, R., Gambin, T.: Comparison of KNN and k-means optimization methods of reference set selection for improved CNV callers performance. BMC Bioinform. 20(1), 1–10 (2019)
5. Zonta, T., da Costa, C.A., da Rosa Righi, R., de Lima, M.J., da Trindade, E.S., Li, G.P.: Predictive maintenance in the Industry 4.0: a systematic literature review. Comput. Ind. Eng. 106889 (2020)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Raw Mill Engine Failure Detection from Transformer Gated Convolutional Unit Networks;2023 IEEE International Conference on Data and Software Engineering (ICoDSE);2023-09-07
2. Engine Failure Detection of Raw Mill Machine via Discrete Variational Auto-encoder;2022 International Conference on Data and Software Engineering (ICoDSE);2022-11-02