Author:
Ye Zejun,Zhao Defeng,Zhang Wentao,Wang Ruixuan
Publisher
Springer Nature Singapore
Reference21 articles.
1. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109–165. Elsevier (1989)
2. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_9
3. Yan, S., Xie, J., He, X.: DER: dynamically expandable representation for class incremental learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3014–3023. IEEE (2021)
4. Li, Z., Zhong, C., Liu, S., Wang, R., Zheng, W.-S.: Preserving earlier knowledge in continual learning with the help of all previous feature extractors. arXiv preprint arXiv:2104.13614 (2021)
5. Rebuffi, S.-A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010. IEEE, Honolulu (2017)