Smart Twitter Analysis on Location Using Kali Linux
Publisher
Springer Singapore
Reference15 articles.
1. Zala DK, Gandhi A (2019) A twitter based opinion mining to perform analysis geographically. In: 2019 3rd International conference on trends in electronics and informatics (ICOEI), Tirunelveli, India, pp 59–63. https://doi.org/10.1109/ICOEI.2019.8862548.
2. Arbi Siti RHM, Bismo A, Sutiyo L (2019) Segmentation analysis of Instagram Users Based on Preferences towards Forms and Types of Online Marketing Content. In: 2019 International conference on information management and technology (ICIMTech), Jakarta/Bali, Indonesia, pp 202–207. https://doi.org/10.1109/ICIMTech.2019.8843797.
3. El Rahman SA, AlOtaibi FA, AlShehri WA (2019) Sentiment analysis of twitter data. In: 2019 International conference on computer and information sciences (ICCIS), Sakaka, Saudi Arabia, pp 1–4. https://doi.org/10.1109/ICCISci.2019.8716464.
4. Giannoulakis S, Tsapatsoulis N (2019) Filtering instagram hashtags through crowdtagging and the HITS algorithm. IEEE Trans Comput Soc Syst 6(3):592–603. https://doi.org/10.1109/TCSS.2019.2914080
5. Guevara J, Costa J, Arroba J, Silva C (2018) Harvesting opinions in Twitter for sentiment analysis. In: 2018 13th Iberian conference on information systems and technologies (CISTI), Caceres, pp 1–7. https://doi.org/10.23919/CISTI.2018.8399226.